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The numerical performance of a Monte Carlo scheme used in the analysis of non- 
equilibrium gas dynamics has been greatly improved. This improvement is attained by careful 
implementation of the algorithm in order to take advantage of the vector hardware of super- 
computers. The performance of the modified implementation is demonstrated by application 
to three different flow problems. First, the one-dimensional standing shock wave is considered. 
Due to the relative simplicity of this example, it is shown that an adequate solution is 
obtained in a very small computational time. The second problem considered is the flow of 
an expanding gas through an axisymmetric nozzle. Lastly, the hypersonic flow of argon over 
a three-dimensional wedge is computed. This problem illustrates the increase in the number 
of molecules which may be employed in the simulation due to the improved performance of 
the algorithm. In fact, over 10 million particles are employed which is the largest number 
reported in the literature for the simulation scheme considered. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

The direct simulation Monte Carlo method (DSMC) has become a popular 
numerical tool used in the solution of rarefied and nonequilibrium gas dynamics. 
This technique was developed by Bird [l] over a number of years to the extent 
that many complex physical phenomena may be modelled in a simulation. In this 
method, the large number of molecules in a real gas is simulated through a much 
smaller set of representative particles. The paths of these simulated molecules are 
traced out in physical space by decoupling motion from intermolecular collisions. 
The time step over which decoupling occurs must be smaller than the mean time 
between collisions. A computational grid is generated in physical space for the 
determination of local flow conditions. Each particle has three velocity components, 
up to three spatial coordinates, and perhaps internal energy associated with it. The 
collisions are treated statistically, with the probability of collision obtained from 
kinetic theory. The method obtains macroscopic flow quantities such as tem- 
perature and density by averaging over the microscopic values. Reviews of the 
status and importance of the method have recently been given by Bird [2] and 
Muntz [3]. 

* Mailing adress: NASA Ames Research Center, MS 230-2, Moffett Field, CA 94035. 
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The use of this technique has become more widespread with the increased interest 
in rarefied gas dynamics which has been generated by modern aerospace projects 
such as hypersonic flight and interplanetary exploration. One of the main disadvan- 
tages of the DSMC technique has been its large computational penalty. An 
illustrative example is provided by the three-dimensional calculations of Celenligil 
et al. [4] which required 20 CPU hours on the CRAY-2 while employing 82,000 
simulated molecules and 5000 cells. A new computationally efficient particle scheme 
has been developed by Baganoff and McDonald [S]. The substantial increase in 
numerical performance is attained by appropriate structuring of their algorithm on 
the vector architecture of the CRAY-2 computer. The purpose of this paper is to 
report upon the vectorization of the DSMC algorithm. The implementation altera- 
tions made to a typical DSMC code will be described. To highlight the improved 
numerical performance of the vectorized implementation three different flow 
problems are computed. Specifically, these are a standing shock wave, an axisym- 
metric nozzle flow, and a hypersonic, three-dimensional wedge flow. 

2. THE SCALAR DSMC ALGORITHM 

A particle method may be conveniently divided into seven individual tasks which 
are performed (not necessarily in order): 

(i) generation of new molecules, 
(ii) movement of molecules, 
(iii) determination of molecule location, 
(iv) interaction with boundary, 
(v) indexing of molecules, 

(vi) calculation of collisions, 
(vii) sampling of molecular properties. 

Each of these will now be discussed in more detail. 
In the DSMC technique, molecules are contantly entering and leaving the com- 

putational domain. The properties of entering molecules are specified by the known 
boundary conditions. Due to the fact that the number of entering molecules is 
usually a small fraction of the total number in the entire flowlield, this aspect of the 
technique requires little computational effort. The movement of each particle 
through the distance given by the product of the velocity vector and the decoupling 
time step is a straightforward operation. Once a particle has been moved, its loca- 
tion in the computational grid must be determined. This may be achieved in a num- 
ber of different ways. The method originally employed by Bird Cl] involved making 
a check of the adjacent cells to discover whether the molecule has moved closest to 
that location. In a two-dimensional calculation this process requires the computa- 
tion of nine distances and is clearly numerically intensive. One practical alternative 
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is the use of a body-fitted coordinate scheme [6] of which the simplest form is 
uniform cell lengths [7]. After establishing the location of the particle, any interac- 
tions with the cell boundaries are imposed. Such conditions include reflection from 
a solid surface, removal from the simulation, or transfer to a different computa- 
tional region. It is also generally found that the boundary conditions can be 
processed very efficiently. After the location of the particle has been finalized, the 
counter of the number of molecules in the current cell is updated. 

Once all the molecules have undergone the previous operations, they must be 
indexed by cell location for the subsequent selection and calculation of inter- 
molecular collisions. Each cell must be given a base index from which all other 
molecules in the cell can be reached through a cross reference list [ 11. The algo- 
rithm for the tasks (ii)-(v) is listed in Fig. 1 for a one-dimensional problem. The cell 

cccc 
cccc 
cccc 
cccc 
cccc 
cccc 
cccc 
cccc 
cccc 
cccc 
cccc 

X(I) : x coordinate of molecule I. 
U(I) : u velocity component of molecule I. 
m(I) : cell index of molecule I. 
NCELL(J,l) : number of molecules in cell J. 
NCELL(J,Z) : base index of cell J. 
LCR(1) : cross reference pointer for molecule I. 
NX : total number of cells. 
NTOT : total number of molecules. 
DELTAT : decoupling time step. 
TRUNCX : truncation factor for determination of cell index. 

CCCC Set number of molecules in each cell equal to zero. 
DO 10 J=l,NX 

10 NCELL(J,l)=O 

CCCC Loop over all molecules. 

DO 11 I=l,NTOT 

cccc Movement of molecules. 
X(I)=X(I)tU(I)*DELTAT 

cccc Determination of cell index. 
NP(I)=l+X(I)*TRUNCX 

cccc Compute any boundary interaction. 
CALL BOUNDARY(I) 

cccc Update sum of molecules in current cell. 
NCELL(NP(I),l)=NCELL(NP(I),l)+l 

llCONTINUE 

CCCC Process the base index for each cell. 
M=O 
DO 12 J=l,NX 

NCELL(J,2)=M 
M=M+NCELL(J,l) 

12 NCELL(J,l)=O 

CCCC Process the cross reference pointer to each molecule. 
DO 13 I=l,NTOT 

J=NP(I) 
NCELL(J,l)=NCELL(J,l)tl 
L=NCELL(J,2)+NCELL(J,l) 

13 ICR(L)=I 

FIG. 1. Scalar DSMC algorithm for the move, locate, and sort operations. 
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CCCC DSUM(J) : sum of molecules in cell J. 
CCCC USUM(J) : sum of u velocity in cell J. 
CCCC WSUM(J) : sum of the square of u velocity in cell J. 
CCCC ESUM(J) : sum of internal energy in cell J. 
CCCC E(I) : internal energy of molecule I. 
cccc 

DO 20 I=l,NTOT 
J=NP(I) 
DSUM(J)=DSUM(J)tl.O 
USUM(J)=USUM(J)tU(I) 
VSuM(J)=VSUM(J)tV(I) 
WSUM(J)=WSUM(J)+W(I) 
UUSUM(J)=UUSUM(J)+U(I)*U(I) 
WSUM(J)=WSUM(J)+V(I)*V(I) 
wWSuM(J)=wWSuM(J)tW(I)*W(I) 

20 ESUM(J)=ESUM(J)+E(I) 

FIG. 2. Scalar DSMC algorithm for the sampling of microscopic quantities. 

size is assumed uniform so that the cell location of each molecule is obtained 
through simple truncation. All the codes developed in the current study were 
written in standard FORTRAN 77 and employed the CFT77 compiler available on 
the CRAY machines. 

After the indexing of the molecules has been completed, a number of collisions 
is calculated in each cell. This aspect of the DSMC technique has received a great 
deal of attention in the literature and will be further examined in the following 
section. The current description is completed with consideration of the sampling of 
microscopic flow properties. This is normally performed by passing through the list 
of all particles. For each molecule, the cell location is obtained. Then, for each of 
the three components, the velocity and the square of the velocity are added to the 
cumulative totals for that cell. A record of internal energy is also maintained 
if required. A representative algorithm is listed in Fig. 2 for the one-dimensional 
computation. 

3. THE DSMC COLLISION ALGORITHM 

The DSMC collision algorithm may be divided into the selection of candidate 
collision pairs, and the calculation of post-collision properties for those molecules 
which are collided. While the procedure for the determination of post-collision 
quantities are well established, the manner in which collision pairs are selected in 
the DSMC method has been the subject of some debate, and several different 
schemes have been formulated. Most of these have been classified by Nanbu [S] on 
the basis of the mathematical model represented. Until quite recently, the two most 
common methods in use were the Time Counter scheme of Bird [ 11, which effec- 
tively solves the Kac Master equation, and the Modified Nanbu scheme [9], which 
solves the Boltzmann equation. These methods were compared by Boyd and Stark 
[lo] and found to give excellent agreement. However, a later study revealed that 
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more significant statistical fluctuations were associated with the Modified Nanbu 
scheme [ll]. The deliberation over which scheme is preferable is dependent upon 
the information desired from the computations. It has been expressed by Bird [ 121 
that the realistic modelling of the physics of the flow is a more important 
criterion than the solution of any particular mathematical equation. Therefore, for 
engineering applications, the Time Counter method has retained its level of 
popularity, with the Modified Nanbu scheme being best suited to providing 
solutions to the Boltzmann equation. 

In the Time Counter scheme, two particles in the current cell are randomly 
selected. The probability that these molecules collide is then given by 

(1) 

where 0 is the total collision cross section and g is the relative velocity. If this pair 
is accepted for collision then a time counter for the current cell is incremented by 
an amount 

2 
At,=- 

Nnag ’ (2) 

where N is the number of simulated molecules in the cell and n is the number den- 
sity. A number of collisions is calculated in the cell until the sum of a number of 
At,? is just greater than the decoupling time step. It is shown rigorously in Ref. [S] 
that these procedures lead to the correct expression for the molecular collision rate 
obtained from kinetic theory. If selected, the postcollision properties of the 
molecules are determined through application of conservation of momentum and 
energy as described in Ref. [ 11. 

Attempts to vectorize the Time Counter scheme have met with only limited suc- 
cess. A reasonable degree of speedup was achieved by Usami et al. [ 131; however, 
the procedures proposed require forced vectorization which leads to a small degree 
of error in the calculations. As indicated by Baganoff and McDonald [ 151, the 
difficulty in treating the Time Counter scheme is due to the vector dependency 
associated with the implementation of summing several values of At, given by 
Eq. (2). The vector architecture on a super computer achieves substantial improve- 
ment in numerical performance by simultaneously performing operations on a vec- 
tor of data. A dependency occurs when an operation on one element of the vector 
requires a different element from the same vector. In the case of the Time Counter 
scheme the dependency results from the fact that the number of collisions to be per- 
formed in each cell is not known prior to calculating the collisions. In Ref. [S] a 
new collision algorithm is introduced in which a number of candidate collision 
pairs is sampled in each cell prior to entering the associated collision selection. The 
probability of collision for each of the pairs sampled may then be expressed as 

P = ANncrg At, (3) 
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where dt is the decoupling time step, and A scales the collision probability in each 
cell and is given in terms of the cell sample size and reference flow properties. Due 
to the circumstance that the number of pairs to be sampled is known, this collision 
algorithm may be efficiently vectorized. By careful implementation of their 
algorithm, Baganoff and McDonald reach a performance previously unheard of for 
particle simulation methods. It is demonstrated in Ref. [S] that three-dimensional 
simulations involving several million molecules can be completed in just 1 or 2 
CPU on the CRAY-2. This clearly represents a substantial improvement on the 
performance obtained in Ref. [4] for an unvectorized code. However, direct 
comparison is made difficult due to the fact that the calculations undertaken in 
Ref. [4] included a much more realistic gas model with a complex computational 
grid. 

Bird [12] has also published a new collision scheme which is termed the No 
Time Counter (NTC) method and has similar elements to that of Baganoff and 
McDonald. The idea of a time counter is replaced with the expression for the total 
number of collision pairs to be sampled in each cell, 

N, = 4 Nn( og),,, At 

and the probability of collision for each pair sampled is again given by Eq. (1). This 
scheme was introduced to alleviate difficulties found with the Time Counter method 
for flows in which hypersonic conditions necessitated the use of very small time 
steps. Under such conditions, the time increment determined from Eq. (2) may sub- 
stantially exceed the decoupled time step. This may then result in a reduction of the 
collision rate leading to an increase in shock wave thickness. This undesirable 
aspect of the Time Counter method is also exhibited in gas mixtures where a hot 
species which is present in small quantities can leak upstream of a shock and thus 
distort the temperature profiles in this vicinity [14]. 

The clearest difference between the two collision schemes given in Refs. [S, 123 
pertains to the establishment of the pair sample size. In the work of Baganoff and 
McDonald this quantity is usually chosen as a fraction of the total number of 
molecules in the cell whereas in the NTC method this sample size is determined 
directly from Eq. (4). It is important to note that the NTC scheme employs Eq. (1) 
as the collision probability which by its very definition can never exceed unity as 
required. However, the same is not true of Eq. (3) and care must be taken in the 
coding to ensure that probabilities exceeding unity do not occur. The advantage in 
the approach adopted in Ref. [S] is that the formation of candidate pairs may be 
entirely vectorized. 

In the current work, it is the aim to vectorize the DSMC method of Bird with 
the collisions calculated using the No Time Counter scheme. The purpose in this 
undertaking is to allow the large number of scalar DSMC codes which currently 
exist to be conveniently altered to obtain improved performance through the vector 
hardware on supercomputers. For reference, a listing of a scalar collision algorithm 
which employs the NTC scheme is given in Fig. 3. It should be noted that the 
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CCCC FPAIRS(J) : number of collision pairs to be sampled in cell J. 
CCCC SIGYAGMX(J) : maximum value of the product of collision cross section 
cccc and relative velocity for cell J. 
CCCC ANGLE(NAWGLE,3) : NANGLE preprocessed unit vectors. 
cccc 

CCCC Loop over all cells 
DO 30 J=l,NX 

cccc 

cccc 

cccc 

33 

cccc 

cccc 

cccc 

cccc 

cccc 

cccc 

31 

Determine number of pairs to be sampled from Eq.(4). 
FPAIRs(J)=FPAIRS(J)+FACTOR*NCELL(J,l)*NCELL(J,l)*SIGMAGMX(J) 
NPAIRS=INT(FPAIRS(J)) 
FPAIRS(J)=FPAIRS(J)-NPAIRS 

Loop over number of samples for current cell 
DO 31 M=l,NPAIRS 

Sample a collision pair. 
Il=NCELL(J,l)*RANF()+O.99999999 
Il=Mnx(l,Il)+NCELL(J,2) 
12=NCELL(J,l)*RANF()tO.99999999 
12=MAX(1,12)+NCELL(J,2) 
IF (Il.EQ.12) GOT0 33 
Il=LCR(Il) 
12=LCR(I2) 

Determine relative velocity. 
UR=U(Il)-U(I2) 
vR=V(Il)-V(I2) 
WR=W(Il)-W(I2) 
C+SQRT(UR*UR+VR*VR+WR*WR) 

Product of collision cross section and relative velocity. 
SIGMAG=FSIGMA(G)*G 
SIGMAGMX(J)=AMAX1(SIGWAcMx(J),SIGMAG) 

Probability of collision given by Eq.(l). 
IF (SIGMAG/SIGMAGMX(J).LT.RANFO) GOT0 31 

Determine center of mass velocity. 
uCM=0.5*u(11)+0.5*u(12) 
VCM=O.5*V(Il)+O.S*V(I2) 
wCM=0.5*w(11)+0.5*w(12) 

New relative velocity vector from lookup table. 
IANGLE=NANGLE*PAWF()+0.99999999 
UR=G*ANGLE(IANGLE,l) 
VR=G*ANGLE(IAWGLE,l) 
WR=G*ANGLE(IANGLE,l) 

Compute post collision velocities. 
u(I1)=uCMtUR*o.5 
U(I2)=UCM-UR*O.5 
v(I1)=vCMtVR*o.5 
v(I2)=vCM-VR*o.5 
w(Il)=WCMtWR*o.5 
W(I2)=WCM-WR*O.5 

CONTINUE 

30 CONTINUE 

FIG. 3. Scalar DSMC algorithm for the No Time Counter collision scheme. 
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post-collision unit vector for the relative velocity is efficiently obtained through use 
of a lookup table. This idea follows the same line of thought as McDonald [7] in 
employing tabulated data for the speedup of various aspects of Monte Carlo 
simulations. 

4. A VECTORIZED IMPLEMENTATION OF THE DSMC ALGORITHM 

Having described the DSMC algorithm in its scalar form, the structural changes 
which must be made to allow efficient vectorization are now considered. Refering 
back to the list of tasks given in Section 2, it is noted that the vectorization of the 
procedures for molecule generation and boundary interaction are unnecessary. 
Parts of these routines may indeed be vectorized and their efficiency improved 
through the use of tabulated data. However, these aspects are largely unimportant 
for computational efficiency, and are therefore neglected in the following discus- 
sions. The movement of the molecules is vectorized in a straightforward manner 
and simply requires one pass through the list of all particles. This is performed 
separately from other operations. As discussed in Section 2, there are a number of 
different ways to determine the cell location of each molecule. Obviously the most 
efficient method should be selected for the restraints imposed by the geometry of 
the individual flow configuration. In any case, most of these methods are vec- 
torizable and again just require a single pass to be made through all molecules in 
the simulation. The molecular indexing requires more careful consideration and 
does not appear to be fully vectorizable. The list of particles is looped over to 
obtain the number of molecules in each cell. Simultaneously, a record is maintained 
of the instantaneous value of the particle count in the cell that each particle 
occupies. This procedure then allows the processing of the cross reference array to 
be entirely vectorized. This is performed following the determination of the base 
index for each cell. Although this procedure is only partially vectorizable, this 
portion of the code consumes a small amount of computational effort. These ideas 
have been listed for the one-dimensional case in Fig. 4. 

It should be noted that the efficient computation of boundary conditions is 
achieved by employing the base index and cross reference arrays which are later 
used in the calculation of collisions. These arrays may also be used to improve the 
efficiency of the algorithm for sampling the molecular quantities. Instead of passing 
down the list of molecules, partial vectorization is achieved by proceeding on a 
cell by cell basis. As the number of molecules in each cell is known, this allows the 
computer to form a vector over each cell. A listing of this routine is given in Fig. 5. 

Lastly, the collision algorithm is considered. The total sample size of all collision 
pairs is first determined by summing over all computational cells. To be able to 
refer to the cell in which each of these collisions occurs it is necessary to generate 
a cross reference list. It is then possible to pass down this list to compute all 
collisions with complete vectorization. This portion of the code must be forcibly 
vectorized as the FORTRAN compiler on the CRAY-2 is suspicious of a vector 
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CCCC LCT(1) : number of molecules in the cell occupied by molecule I at the 
cccc instant I is reached in the pass through the list of particles. 
cccc 

CCCC Set number of molecules in each cell equal to zero. 
DO 40 J=l,NX 

40 NCELL(J,l)=O 

CCCC Movement of molecules. 
DO 41 I=l,NTOT 

41 X(I)=X(I)+U(I)*DELTAT 

CCCC Determination of cell index. 
DO 42 I=l,NTOT 

42 NP(I)=l+X(I)*TRUNCX 

CCCC Sum of molecules in each cell, and running total. 
DO 43 I=l,NTOT 

NCELL(NP(I),l)=NCELL(NP(I),l)tl 
43 LCT(I)=NCELL(NP(I),l) 

CCCC Process the base index for each cell. 
M=O 
DO 44 J=l,NX 

NCELL(J,2)=M 
44 M=M+NCELL(J,l) 

CCCC Process the cross reference pointer to each molecule. 
DO 45 I=l,NTOT 

45 LCR(NCELL(NP(I),2)+LCT(I))=I 

CCCC Compute all boundary interactions. 
CALLBOUNDARY 

FIG. 4. Vector DSMC implementation for the move, locate, and sort operations. 

DO 50 J=l,NX 
50 DSUM(J)=DSUM(J)+NCELL(J,l) 

DO 51 J=l,NX 
DO 51 K=l,NCELL(J,l) 

I=LCR(KtNCELL(J,2)) 
USUM(J)=USUM(J)+U(I) 
VSUM(J)=VSlJM(J)+V(I) 
WSUM(J)=WSUM(J)+W(I) 
WSIJM(J)=WSUM(J)+U(I)*U(I) 
WSIJM(J)=WSUM(J)tV(I)*V(I) 
wWSUM(J)=WWSUM(J)+W(I)*W(I) 

51 ESIJM(J)=ESUM(J)+E(I) 

FIG. 5. Vector DSMC implementation for the sampling of microscopic quantities. 
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dependency which might occur if the same particle was collided more than once 
over the same time step. A further vector dependency may occur in the updating of 
the maximum value of the product of the total collision cross section and the 
relative velocity. However, as this product appears in both Eq. (1) and Eq. (4) then 
any error is effectively cancelled. The listing for the collision algorithm is given in 
Fig. 6. It should be noted that it is a fairly simple matter to generate sub-lists of 
collision pairs which are to undergo internal energy transfer, chemical reactions, 

cccc 
cccc 
cccc 
cccc 

NPAIRS(J) : number of collision pairs to be sampled in cell J. 
INDEX(M) : cell index for each of M collision pair samples. 

For each cell, determine number of pairs to be sampled from Eq. (4). 
DO 60 J=l,NX 

60 

cccc 

FPAIRs(J)=FPAIRS(J)+FACTOR*NCELL(J,l)*NCELL(J,l)*SIGMAGMX(J) 
NPAIP.S(J)=INT(FPAIRS(J)) 
FPAIRS(J)=FPAIRS(J)-NPAIRS(J) 

Process cross reference array for cell index of each sample. 
NTPAIRS=O 
DO 61 J=l,NX 

62 
61 

cccc 
CDIRS 

DO 62 M=NTPAIRS+l,NTPAIRS+NPAIRS(J) 
INDEX(M)=J 

NTPAIRS=NTPAIRS+NPAIRS(J) 

Compiler directive to force vectorization. 
IVDEP 
DO 63 M=l,NTPAIRS 

cccc Lookup current cell. 
J=INDEX(M) 

cccc Sample a collision pair. 
Il-NCELL(J,l)*RANF()+O.99999999 
Il=MAX(l,Il) 
12=(NCELL(J,l)-l)*RANF()tO.99999999 
12=MAX(1,12)+11 
12=12-(12/(NCELL(J,l)tl))*NCELL(J,l) 
Il=LCR(Il+NCELL(J,2)) 
12=LCR(I2tNCELL(J,2)) 

cccc 

cccc 

cccc 

Determine relative velocity. 
. . . . see Fig. 3 . . . . 

Product of collision cross section and relative velocity. 
. . . . see Fig. 3 . . . . 

Probability of collision given by Eq.(l). 
IF (SIGMAG/SIGMAGMX(J).GT.RANF()) THEN 

cccc 

cccc 

cccc 

Determine center of mass velocity. 
. . . . see Fig. 3 . . . . 

New relative velocity vector from lookup table. 
. . . . see Fig. 3 ,. . . . 

Compute post collision velocities. 
. . . . see Fig. 3 . . . . 

ENDIF 

63 CONTINUE 

FIG. 6. Vector DSMC implementation for the No Time Counter collision scheme. 
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and other physical phenomena. In this way, these important aspects of DSMC 
calculations may be included at little additional cost. Most of the procedures given 
in Figs. 4-6 may be readily extended to gas mixtures. 

It is important to take into consideration the effect upon the clarity of the DSMC 
algorithm of the vectorized implementation. This may be judged by comparison of 
the listings in Figs. l-3 with those in Figs. 4-6. Most of the implementation changes 
in converting from scalar to vector coding are quite straightforward in that opera- 
tions are performed on lists of particles rather than one at a time. The most signifi- 
cant departures from the scalar code occur in the processing of NCELL and LCR 
in Fig. 4, as described above, and in the selection of candidate collision pairs. In the 
latter case, any method which ensures that a particle is not collided more than once 
over any one time step is suitable. The example listed in Fig. 6 is just one of several 
which can be constructed. It is therefore proposed that the introduction of vector 
programming technique does not greatly hinder the understanding of the algorithm. 

5. EXAMPLE CALCULATIONS 

To demonstrate the advances made by the vectorized implementation of the 
DSMC algorithm described in the previous section, three different flow examples 
are considered. The first involves a one-dimensional standing shock wave of argon 
for a Mach number of 8. The conditions across the shock are initially specified 
by the continuum relationships and the boundary conditions employed are the 
reflecting pistons described by Bird [12]. The normalized density and temperature 
profiles are shown in Fig. 7 for these conditions. Results are presented for both 
scalar and vector codes and the solutions are found to match very well. The 
reciprocal shock thickness of 0.24 offers excellent agreement with the experimental 

1.2 

1.0 

0.8 
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I 

-15 -10 -5 0 5 10 
Distance 

FIG. 7. Structure of a Mach 8 standing shock wave in argon: -, density (vector); ---, temperature 
(vector); A, density (scalar); V, temperature (scalar). 
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data given by Alsmeyer [ 151, thus verifying the simulation procedures. The simula- 
tions employed 100 uniform cells with about 12,000 simulated particles in the flow 
domain. The sampling of microscopic quantities was performed every four time step 
increments to improve the statistical independence of the results. Under these con- 
ditions, the solutions shown in Fig. 7 for the vectorized code required just 180 CPU 
s on a CRAY YMP in which time the sample sizes accumulated in each cell ranged 
from 7 x lo5 to 2.8 x lo6 and a total of 8 million collisions were computed. While 
a fair comparison between different codes and solution techniques is almost 
impossible, it is interesting to note that continuum solutions of the Burnett equa- 
tions (computed with a vectorized code on the same CRAY YMP by Lumpkin 
[16]) for similar shock waves typically require 300-400 CPU s. 

The vector DSMC code was also executed on a CRAY-2, where the performance 
was found to be reduced by a factor of about 2.4. To assess the improved perfor- 
mance attained through use of the vector hardware, the vector code was compiled 
and executed with the vectorization options disabled. Hence it was discovered that 
the speedup due to vectorization was a factor of 5. The maximum improvements in 
numerical performance obtained through vectorization of appropriate algorithms 
tend to give a speedup of around 20. By comparison with such performances the 
DSMC algorithm is found to be only moderately well vectorized. For the future, 
alternative computer hardware designs such as parallel machines and superscalar 
microprocessors should be considered for the DSMC algorithm. However, in com- 
parison with previous investigations undertaken with the DSMC technique, and 
indeed with the continuum solution of the Burnett equations, it is clear that the 
improved performance of the algorithm achieved on the vector hardware of super- 
computers is a very useful accomplishment. 

The second example considered is the flow of carbon dioxide through a small 
axisymmetric nozzle. The conditions at the nozzle throat of this thruster are such 
that the flow may be considered rarefied long before the exit plane is reached. The 
nozzle conditions are given in Table I and have been specified by engineers of the 
Low Thrust Propulsion Branch at NASA Lewis Research Center. The DSMC 
calculation was begun at the throat with the conditions obtained from a 
Navier-Stokes solution of the nozzle flow. The nozzle wall was modelled as a fully 
accomodated diffuse reflector with the local wall temperature again obtained from 

TABLE I 

Conditions for Axisymmetric Nozzle Flow 

Gas type co* 
Stagnation temperature 1OOOK 
Stagnation pressure 7700 Pa 
Throat Reynolds number 1000 
Nozzle throat diameter 3.175 x 10m3 m 
Nozzle exit angle 20” 
Nozzle area ratio 100 
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FIG. 8. Mach number contours for a small axisymmetric nozzle. 

the continuum solution. The axisymmetric flow is modelled in two dimensions in 
the usual manner, as described in Ref. [ 11. Hence the molecular velocities and 
radial position must be rotated to ensure the axisymmetric nature of the flow. The 
nonequilibrium relaxation of the rotational energy mode is modelled using the 
variable exchange probability developed by Boyd [17]. Due to the low tem- 
peratures involved in the simulation, the vibrational mode is assumed to be frozen. 
The Mach number contours for the flow are shown in Fig. 8 and range from 0.75 
near the wall to 5.5 in the isentropic core. As found in previous studies, the sonic 
line intersects the nozzle lip. This phenomenon is not predicted by the continuum 
solution. The temperature profiles in the nozzle exit plane are given in Fig. 9 for 
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FIG. 9. Temperature profiles obtained with DSMC and Navier-Stokes codes in the exit plane of a 
small axisymmetric nozzle: -, total (continuum); A, translational (DSMC); V, rotational (DSMC). 
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both the continuum and DSMC solutions. It may be seen that significant non- 
equilibrium exists between the translational and rotational modes, while the tem- 
peratures obtained with the DSMC solution are larger than that obtained from the 
Navier-Stokes computations. A similar trend is observed for the density solutions 
at the exit plane. A total of 15,000 cells and 1 million simulated particles were 
employed in the flowtield. Due to the very large change in density experienced in 
the flowfield as the gas expands, the cell sizes and decoupling time steps were varied 
with geometric location. During the sampling phase of these computations, the vec- 
torized code marched the 1 million particles through 1750 time steps and processed 
over 140 million collisions every CPU hour on a CRAY-2. The overall performance 
is slightly slower than that for the shock wave and it is generally found that the 
efliciency of the code is largely governed by the complexity of the computational 
geometry employed. In this application, an optimized version of Bird’s adjacent cell 
procedure was used in the determination of the location of each molecule. 

The final example considered is the hypersonic flow of argon over a wedge with 
an apex half angle of 40”. The freestream conditions are listed in Table II and have 
been chosen to correspond to one of the experimental cases investigated by 
Hornung and Smith [ 181 except that the density of the flow has been reduced by 
a factor of 1000. One of the concerns in Ref. [18] was the three-dimensionality of 
the flow. Therefore, in the present application of the vectorized code, this flow is 
treated in three dimensions. The computational grid was divided into four separate 
regions to allow proper simulation of the interaction with the wedge and the surface 
was modelled as a diffuse reflector fully accomodated to a wall temperature of 
300 K which was chosen to be representative of the experimental investigation 
[19]. Temperature contours for the flow are shown in Fig. 10 in the XY plane for 
Z= 0, which corresponds to the plane through the center of the wedge. The 
molecules enter the computational domain across the plane X= 0 and are removed 
after crossing the plane specified by the X coordinate corresponding to the back 
end of the wedge. All other boundaries specularly reflect the molecules back into 
the flowtield. Due to the large angle of the wedge, the shock is detached from the 
leading edge and this phenomenon is clearly observed in Fig. 10. Contours of 
density ratio are shown in Fig. 11 in the XZ plane for Y = 0, which again represents 
the plane of symmetry. It is seen that the flow in front of the wedge becomes only 

TABLE II 

Conditions for Three-Dimensional Wedge Flow 

Gas type Ar 
Freestream temperature 57 K 
Freestream density 2.2x 10-6kgmm3 
Freestream Mach number 16 
Wedge length 0.051 m 
Wedge extent 0.152 m 
Wedge angle 40” 
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FIG. 10. Temperature contours for hypersonic flow over a wedge in the XY plane for Z=O. 

slightly three-dimensional as the corner is approached. The shock standoff distance 
attained from the calculation is 0.0057 m which compares very favorably with the 
experimental result of 0.005 m [IS]. The flowtield was computed using over 
375,000 cells and 10 million simulated molecules. This number of molecules matches 
the largest total previously reported in the literature in Ref. [IS] and is by far the 
largest achieved for Bird’s DSMC method. The performance of the vectorized code 
for this application is such that the 10 million particles are advanced through 
132 time steps in 1 CPU h on the CRAY-2. 
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FIG. 11. Contours of density ratio (p/p,) for hypersonic flow over a wedge in the XZ plane for 
Y=O. 
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CONCLUSIONS 

Substantial improvements in the numerical performance of the Direct Simulation 
Monte Carlo method have been attained by the application of vector programming 
techniques to an algorithm which employs the No Time Counter collision scheme. 
The new computational possibilities of the vectorized code have been demonstrated. 
It is found that the geometric complexity of the computational grid employed is the 
dominating aspect in terms of numerical performance. While the use of uniform and 
regular shaped cells gives the greatest efficiency, it has not been proven that such 
procedures provide accurate solutions for flowfields involving interaction with solid 
surfaces. The most important conclusion to be drawn from the present study is that 
the new vectorized implementation allows the DSMC method to take good advan- 
tage of the hardware of supercomputers. It is therefore possible to run a larger 
number of parametric studies for moderately sized problems, or alternatively model 
problems on a scale which has not been previously possible. All through its 
development, the DSMC method has suffered from its notoriously poor numerical 
efficiency. It is therefore proposed that the advances reported here will go some way 
to reducing this obstacle, thereby encouraging wider use of this important computa- 
tional technique. 

ACKNOWLEDGMENTS 

Support (for IDB) has been provided by NASA Grant NCC2-582. Helpful discussions with the 
research group of Professor D. Baganoff and Dr. J. D. McDonald are gratefully acknowledged. Thanks 
are extended to Dr. P. F. Penko of NASA Lewis Research Center for providing the continuum solution 
of the axisymmetric nozzle flow. 

REFERENCES 

1. G. A. BIRD, Molecular Gas Dynamics (Univ. of Oxford Press, Clarendon, Oxford, 1976). 
2. G. A. BIRD, Commun. Appl. Nwner. Methods 4, 165 (1989). 
3. E. P. MUNTZ, Annu. Rev. Fluid Mech. 21, 387 (1989). 
4. M. C. CELENLIGIL, G. A. BIRD, AND J. N. Moss, AIAA J. 27, 1536 (1989). 
5. D. BAGANOFF AND J. D. MCDONALD, Phys. Fluids A 2, 1248 (1990). 
6. T. ABE, J. Comput. Phys. 83, 424 (1989). 
7. J. D. MCDONALD, Ph.D. thesis, Stanford University, December 1989. 
8. K. NANBU, in Proceedings, 1Sth International Symposium on Rarefied Gas Dynamics, Grado, Italy, 

1986 (Teubner, Stuttgart, 1987), p. 369. 
9. H. PLOSS, Computing 38, 101 (1987). 

10. I. D. BOYD AND J. P. W. STARK, J. Comput. Phys. 80, 374 (1989). 
11. I. D. B0YD, Comput. Phys. 3, 73 (1989). 
12. G. A. BIRD, in Rarefwd Gas Dynamics, Progress in Astronautics and Aeronautics Series, Vol. 118 

(AIAA, Washington, DC, 1989), p. 211. 



VECTORIZATION OF A MONTE CARLO SCHEME 427 

13. M. USAMI, T. FUJIMOTO, AND S. KATO, in Rarefied Gas Dynamics, Progress in Astronautics and 
Aeronautics Series, Vol. 116 (AIAA, Washington, DC, 1989), p. 283. 

14. I. D. BOYD, “Rotational and Vibrational Nonequilibrium Effects in Rarefied Hypersonic Flows,” 
J. Thermophys. Heat Transf: 4, 478 (1990). 

15. H. ALSMEYER, J. Flyid Mech. 74, 497 (1976). 
16. F. E. LUMPKIN, Ph.D. thesis, Stanford University, March 1990. 
17. I. D. BOYD, Phys. Fluids A 2, 447 (1990). 
18. H. G. HORNUNG AND G. H. SMITH, J. Fluid Mech. 93, 225 (1979). 
19. H. G. HORNUNG, private communication. 


